Showing posts with label placer gold. Show all posts
Showing posts with label placer gold. Show all posts

Saturday, July 23, 2016

Gold Prospecting


Note visible gold (distinct yellow) surrounded by pyrite (brassy to silver 
metallic material). Core from the Copper King gold-copper mine, Wyoming.
My latest book 'Gold in Arizona' is now available. It is amazing how many gold deposits there are in Arizona, many sitting idle and many possible extensions of known gold deposits that have been overlooked. Every time I research gold deposits, I am so impressed by how many possibilities there are out there - hundreds and hundreds! My suggestion for those who are new at prospecting (or even been around for many years) is to start looking in known gold mining districts. Those old miners went for the obvious deposits and left a lot of good stuff. Just follow veins and gossans along trend and look for extensions.

Looking to find gold? You've come to the right place. After finding many gold anomalies over the years, mapping gold districts and gold mines, found I was able to identify some gold deposits including a major gold district that was described by one newspaper as having commercial gold mineralization, and also finding a world-class gold deposit with 6 other geologists, I decided to share my experience with prospectors! This latter deposit, known as the Donlin Creek gold deposit in Alaska, is one of the 10 largest gold deposits ever found in all of human history! We were even awarded recognition by the largest gold prospecting and mining association in the world - the Canadian PDAC for our discovery in 1988!

Remember those guys on Gold Rush? Yes, they were finding a lot of gold - a hundred ounces, a thousand ounces, a couple of tiny diamonds. We found more than 40 million ounces of gold, and also a couple of diamond deposits and even some world-class gemstone deposits - but - unlike the Gold Rush guys, I didn't get to keep any of my diamonds or gold - because of who I worked for. Yes, unlike the Fauci CDC gang, I worked for that part of government which thought it was unethical and a conflict of interest to take out patents and rake in $Billions after being paid by tax payers. And there is a good reason for this - imagine, getting all that money after you spread a virus around the world! But am I angry - heck no - I knew what I was getting into. Besides, I received a priceless education and if I had all those $billions, what would I do? Well, I would buy a 4-wheel drive truck with air conditioning, a nice AR-15 rifle, a small cabin in the mountains, and then I would give the rest to charity.

Gold in Arizona - A book about gold deposits in Arizona and where to find them.
Anyway, after hunting gold for more than 30 years, finding the yellow metal for mining companies and the State of Wyoming, I've decided to let you know about gold and other valuable treasures so, I've put together ideas on where to find gold. I published books on gold, diamonds, gemstones that will take you right to the source using GPS coordinates. Over the years I published hundreds of papers along with the books and currently, I'm working on another book on Gold in Arizona where there are a lot of very interesting gold deposits - so please watch for my new book on Arizona when it comes out on Amazon in 2017.

Rock foliation in the Archean age Miners Delight formation metagreywacke
along Rock Creek in the South Pass greenstone belt, provide excellent
natural riffles to trap gold where they crosscut the Rock Creek placer.
One of the state's I did a lot of work in was Wyoming. Wyoming is a strange anomaly. It should be filled with gold based on its geology - it has a continental core known as a craton with some greenstone belts and the craton has been partially destroyed by a very, active igneous system known as the Yellowstone Caldera. This region should be dripping in gold. Greenstone belts are well known in places like Canada and Australia for all of the gold they produce - so why not Wyoming? And the Absaroka volcanics surrounding the Yellowstone caldera contains all kinds of volcanic rocks that should also have gold - where has it gone? There are some scattered gold deposits in the greenstone belts in Wyoming, some large paleoplacer gold deposits, and a few porphyry copper deposits and gold deposits in the Absaroka Mountains, but little gold has ever been reported in Yellowstone. I would bet that Yellowstone is filled with gold, but it is illegal to prospect for gold in that region. Wyoming should have a lot of gold but it historically produced 50 to 200 times less gold than all of its surrounding neighbors (except Nebraska), yet it has more favorable geology for gold. This suggests there are still some major gold deposits that are hidden in Wyoming.

Take for instance the Copper King, the Carissa, the Wolf, Rattlesnake Hills, Seminoe Mountains, Ferris-Haggarty, Puzzler Hill, Kurtz-Chatterton, Mineral Hill, Black Buttes, Bear Lodge Mountains, Dickie Springs-Oregon Buttes and the copper porphyries in the Absaroka mountains. These areas all contain some gold and likely hide a few million+ ounce gold deposits. But why would Wyoming try to keep these deposits from you and me? I have some ideas, but I will let you come to your own conclusions. Other places I have been looking for gold include Alaska, Arizona, Australia, California, Colorado, Idaho, Montana, South Dakota. 

Gold in milky quartz vein material made as inlay in this match
box apparently owned by the Lost Dutchman. 
Some prospectors look for gold and find nothing, others find a little gold or other treasure: maybe ruby, sapphire, gem garnet, diamond, platinum, chromian diopside, palladium or some other valuable metal or mineral. I found all of these in Wyoming; and while prospecting for diamonds in California my gold pan touched some gold, chromian diopside, sapphire and a beautiful sapphire look alike known as benitoite. Diamonds were also found in gold placers in California by others (Hausel, 1998). Others catch a incurable case of 'gold fever' or 'diamond fever' such that they will give up everything - their homes, jobs and common sense just to search for gold. Some are so taken by the fever that they are exposed to scams and con-men who take whatever worldly possessions are left. 

If you want to get rich - learn a little about gold prospecting, geology from a good prospector or field geologist, and learn something about contracts and marketing. Personally, I found $billions in mineral deposits, but unfortunately, didn't learn anything about contracts or marketing - so yes, I never made anything more than wages and all of the minerals I could carry in my back pack. But I had a great time in the wilds.

There are many types of gold deposits to a geologist - hydrothermal, mesothermal, epithermal, replacement, etc., but to prospectors, there are only two types: placer and lode (Hausel, 2001, 2010). Famous placer deposits include Nome and Flat, Alaska, and Alder Gulch, Montana. Examples of lode deposits include the Mother Lode, California and the great Homestake mine in South Dakota.

There is not always a clear distinction between lode and placer gold deposits. For instance, the great Witwatersrand gold deposits in South Africa, the most productive in the world, are classified geologically as paleoplacers. Because they occur in brittle, consolidated rock (mined to depths of greater than 13,000 feet), most prospectors would consider these to be lode deposits. However, geologists classify the great Rand deposits as fossil (paleo) placers, since the gold was deposited in streams and rivers more than 2.5 billion years ago and now the rocks deposited by the former rivers and streams are preserved as hard, consolidated rock ledges.


Eluvial gold typically sits on top of a vein or lode. Eluvial deposits are restricted in size but may be enriched in gold. A
lode may not be exposed at the surface, but if you are finding gold-bearing quartz in alluvium, a vein is likely hidden 
under the alluvial (eluvial) cover. Such deposits are common in Arizona, though few of the eluvial-alluvial deposits have
been explored in detail in a search for the underlying lodes. In Wyoming, there are likely some giant gold deposits under
eluvium and alluvium near South Pass. 

Another not so clear distinction may arise with eluvial deposits. Eluvial deposits are essentially composed of detrital material weathered in place from a nearby (often underlying) source. Gold from an eluvial deposit would show little or no evidence of transportation. Since eluvial deposits are unconsolidated, some prospectors would consider them placers, even though they may directly overlie a lode. There are many examples of eluvial gold in Arizona. The arid environment is favorable for eluvial deposits due to the lack of active streams and - where there is eluvial gold, there is lode gold in the immediate area - something every prospector needs to keep in mind. Eluvial means that the material essentially eroded in place or from a nearby source area. In Arizona, there are many placer, alluvial and eluvial gold occurrences in streams, conglomerates and fanglomerates.

Paleoplacer gold, uranium and diamond deposit from the Snowy Range in
the Medicine Bow Mountains, Wyoming. Note the rock is very hard and
massive, yet it contains many rounded pebbles deposited in streams more
than 2 billion years ago. Uranium, thorium, gold and even diamonds have
been recovered from these rocks in Wyoming. 
Placer deposits
Placers consist of detrital gold and other valuable minerals transported in streams or by wave action to be concentrated with other heavy minerals known as black sands. If you have ever panned for gold, you are familiar with black sands. Black sands consist of dark opaque minerals with greater than average specific gravity, which may include magnetite, pyroxene, amphibole, ilmenite, garnet, sphene, chromite and monazite, as well as some rare light-colored minerals with relatively high specific gravity such as cassiterite and scheelite. If you ever panned near Wilson Bar or Wilson Gulch at South Pass, Wyoming, you may have found all of this heavy, nagging, white to brown quartz that was impossible to pan out. Well, it probably wasn't quartz. With a shortwave ultraviolet light, this heavy quartz likely will fluoresce blue-white simply because it was not quartz, but instead is scheelite, a tungsten ore found in some of the gold ore at the Burr and Hidden Hand mines (Hausel, 2009). When found,on public land, placers can often be claimed under the 1872 mining law. But if you want the lode under the placer, you better look at filing a lode claim too.

Take a close look at this sample. It was one of many found by 
field trip attendees on my past field trips to South Pass. 
Everything you see that is gold colored in the rock is gold.
This was found at the Carissa mine. 
Other minerals of potential economic interest with relatively high specific gravity may occur in gold placers such as cassiterite, scheelite and a host of gemstones including ruby, sapphire, gem-garnet, diamond, platinum, and palladium. While prospecting for diamonds in the Laramie Mountains in southeastern Wyoming, several samples with trace amounts of ruby and sapphire were recovered along with heavy minerals (Hausel and others, 1988; Hausel, 1998). These were eroded from nearby, undiscovered, corundum (sapphire, ruby) mica schists and gneisses. How do you tell if you have ruby or sapphire in your gold pan? Look at crystal habit. The habit is the common form of the crystal. Ruby and sapphire form hexagonal crystals that are bounded by two pinacoids (basically flat surfaces).

While prospecting for diamonds in the Sierra Nevada of California, I found sapphires and benitoite near Poker Flat. And one prospector (Paul Boden) found a couple of excellent gem-quality octahedral diamonds while searching for gold on Cortez Creek in the Medicine Bow Mountains, Wyoming, and another prospector (Frank Yassai) found several diamonds in Rabbit Creek, Colorado while prospecting for gold.
Another sample collected on my field trips for the public. 
Visible gold is seen in every vug in the piece of quartz found
at the Carissa mine at South Pass. So what did the State do?
This likely multi-billion dollar gold deposit was purchased by
the State of Wyoming, withdrawn, and placed within the 
South Pass City historic site where the state now collects 
nothing for all of that gold. 

During erosion of bedrock, these heavy minerals mix with abundant light-colored, glassy, transparent to opaque minerals with low to average specific gravity such as quartz, apatite, feldspar, and mica. Along with these, minerals with high specific gravity are slowly moved in streams with moderate to high water velocity. The sediment carrying capacity of a stream diminishes with decreased velocity. The heavy minerals concentrate by settling out where diminished velocity occurs; such areas are marked by a distinct increase in black sands. Heavy minerals tend to concentrate at the bottom of a stream along the leading edge of stream meanders, behind obstructions (i.e., rocks, cracks in bedrock) and at waterfalls. Since many streams lack sufficient velocity to carry gold for any great distance, much of the gold in these streams (particularly where it is concentrated in pay streaks) is probably transported during flash flooding events or during heavy spring runoff.

The distances heavy minerals can be transported are not known with any accuracy. Some minerals can be transported great distances. For example, because diamond is 6000 to 8000 times harder than any other mineral and is not very heavy (specific gravity of 3.52 compared to 2.87 for quartz), there are cases where transport distances for diamonds has exceeded 600 miles. In southern Africa, diamonds are found in kimberlite pipes, in stream and river placers and in extremely rich beach placers along the west coast of the continent.

Such great transportation distances for gold are not possible. Gold is too heavy (specific gravity of 15 to 19.3), so when found in streams it is thought to have been derived from a nearby source. In some unusual cases, gold may be transported greater than normal distances while in solution. In Alaska, geologist Paul Graff identified gold that had crystallized in nuggets downstream from nearby lode deposits. Maximum transportation distances for gold in solution is unknown.


The color change (upper arrows) more than 1 foot above the gold pan (circled) mark the site of a pay streak in Smith Gulch discovered by prospectors Hank Hudspeth and Buddy Presgrove. This streak was produced during a flash flooding or unusually high spring runoff. A second pay streak was found at the base of the open cut near the standing water (lower arrow). Even though this placer was located in a dry drainage when mined, it was immediately down slope from several lode deposits that provided a favorable site for gold concentration. At this point, the prospectors had not yet reached bedrock, where there is likely another pay streak. 

Flash flooding events appear to be important in forming pay streaks of gold and diamonds. Pay streaks, or lenses of gold-enriched gravel, are often found in zones of coarser-grained pebbles and cobbles. The pay streaks may be scattered over one or more intervals in a vertical column of gravel.

Schematic showing development of meander. Where the stream starts to meander, water velocity decreases & minerals with higher specific gravity concentrate (stippled areas). Through time, the meander may mature, leaving deposits on the inside banks as the stream migrates. Material in the stream as well as the adjacent bank material (which may be high and dry after episodes of flooding and high water) will contain heavy minerals & possibly gold and diamond. 















Where meanders occur in streams, gold may concentrate on the inside of the initial curve in the channel, as well as in the bank (point bar) on the upstream part of the inner meander where gold was deposited in the past. As an example, one of my favorite places to take students in the past in my prospecting courses was near Bobbie Thompson adjacent to a historical gold placer in Douglas Creek, Wyoming. Here the bank gravel sits away from the active stream, but contains enough gold to keep the interest of the students.

Gold Road Lode vein in northwestern
Arizona
In addition to modern placers, some regions contain paleoplacers. Places like Wyoming and the Witwatersrand of South Africa are famous for paleoplacers scattered over large regions. In the Witwatersrand, the paleoplacers are so important, that they have produced about 50% of all of the gold mined in human history. Today, they have the deepest mines on earth. In Wyoming, most paleoplacers have either not been prospected, or only have been cursory examined at best, even though it is a safe bet that economic gold deposits occurs in some of these. Paleoplacers are simply fossil placers that were deposited by streams or by wave action along prehistoric seas in the geologic past. In most cases, these may not lie anywhere near an active stream or sea today; thus, mining would either require transporting water to the paleoplacer, or transporting material from the paleoplacer to water.




Wayne Sutherland, WSGS geologist, examines paleoplacer at Dickie Springs to the south of South Pass. Note all of the rounded boulders and cobbles typically found in active streams and rivers. 











Where the paleoplacer consists of relatively unconsolidated gravel, it can be mined in a manner similar to a sand and gravel operation. If the operation is located near a road, the sand and gravel by-product can be used in road construction. Conversely, gold can be extracted as a by-product of sand and gravel operations. For example, gold was found in several sand and gravel operations and placers adjacent to Interstate 80 in southern Wyoming (Hausel and others, 1993). Where paleoplacers are extremely old and well consolidated, such as in the Witwatersrand, the gold is typically mined underground.
Gold recovered the dry paleoplacer near
Dickie Springs. The gold suggests a 
hidden lode somewhere between this site,
and the exposed South Pass greenstone belt 
to the north. Foster Howland with Hecla Mining
 explored this area & identified a good target - 
a sulfide-bearing iron formation at depth that
could contains gold. The project was 
terminated before the work was completed. 

In the South Pass greenstone belt in western Wyoming, giant paleoplacers surround the region at McGraw Flats to the north and Oregon Buttes-Dickie Springs to the south. And there are smaller ones in between. The southern paleoplacer was reported by Love and others (1978) of the US Geological Survey to contain more than 28.5 million ounces of gold, yet most of this area is unexplored. Along the northern flank of the Seminoe Mountains greenstone belt, the Miracle Mile paleoplacer is unexplored even though myself and field assistants recovered gold from the dry paleoplacers nearly everywhere we sampled. This paleoplacer was discovered by prospectors Charlie and Donna Kortes, also contains dozens of G10 pyrope garnets that indicate somewhere in this region is a very rich diamond deposit or deposits. Keep your eyes out for diamonds when looking in any placer or paleoplacer! Paleoplacers in the Medicine Bow and Sierra Madre Mountains in southern Wyoming yielded some gold and diamonds, but are rich in uranium and thorium.

Lode deposits
One might think of lode deposits as veins or other consolidated rocks that contain anomalously high quantities of metal (e.g., gold). Many lodes occur as distinct quartz veins. These may form linear to tabular masses of quartz within country rock. One important characteristic of many productive veins is the presence of sulfides, such as pyrite (fool’s gold) or arsenopyrite (arsenic-pyrite).

Classic lode. This auriferous quartz vein in metatonalite at the Mary Ellen
mine at South Pass was offset along a small, reverse fault. Lodes are considered
in situ deposits in hard rock
When pyrite oxidizes, it produces sulfuric acid and rust (a massive sulfide deposit of pyrite will smell like rotten eggs, and a massive arsenopyrite deposit will smell like garlic, and both can have considerable gold and silver), resulting in a gossan at the surface and a potential supergene zone (a mineral deposit, or enrichment, formed by descending fluids) a few tens of feet below the surface. Gossans are the oxidized sulfide-rich parts of veins and other mineral deposits that have a distinct, rusty appearance. These gossans offer excellent visual guides in the search for gold and other mineral deposits. In any historic mining district, you will often find dozens, if not hundreds, of old prospect pits dug into the rusty rocks. Prospectors learned to recognize gossans as guides to ore deposits.

Gossan at Red Mountain in the San Juan Mountains, 
southern Colorado. Note all of the red to light 
yellow-colored rock found nearly everywhere in the photo. 
These are gossans that contain significant amounts 
of gold and silver. 
Gossans are good places to search for high-grade gold in lodes. The recognition of gossans in the field can be very helpful to the prospector. For example, gossans produced from the leaching of pyrite are typically very rusty (reddish-brown) in appearance; gossans produced from arsenopyrite are typically greenish-yellow. Gossans are so important that an entire book was written on their different characteristics (Blanchard, 1968).

Large gossans that cover several acres may be situated over giant sulfide-enriched veins or massive sulfide deposits. These may contain gold and/or valuable base metals (copper, zinc, lead, etc). One very large gossan in the Hartville uplift in eastern Wyoming is so distinct that I ended up naming it “Gossan Hill”—it overlies a massive sulfide deposit. One of the better places to look for specimen-grade gold samples is within gossans containing boxworks. Boxworks is a distinct vuggy and rusty rock.



This specimen of boxworks exhibits pore spaces formed where sulfide minerals were removed by oxidation. The sulfides
 were oxidized by oxygen-rich water near the surface, leached out, and removed. Gold, which often is found in pyrite, is
mostly inert, and may remain in place within the boxwork pits, while some of the iron from the pyrite stains the rock and
the walls of the pits. Much of the sulfur was likely mobilized by groundwater cane carried down dip. At Bradley Peak in
the Seminoe Mountains, I found nearly a
dozen of these samples and started a gold rush in 1981. Even this area 
remains essentially unexplored to this day!

Some faults and associated breccias may also be mineralized. Breccias are zones of broken rock containing distinct angular rock clasts. When found, gold may occur in the matrix of the strongly limonite-stained gossan surrounding rock fragments. Other faults, known as shears, may also be mineralized. These shear zones consist of granulated rock. Within many shears, gold is often found associated with rust-stained quartz. Many shear zones, particularly those in greenstone belts, have been quite productive for gold. In some gold mining districts in the world, nearly every foot of the exposed shear zone has been prospected at the surface.

A breccia (angular fragments) cemented by quartz - a good place to check for gold. Such breccias are formed in faults or by the release of gas under pressure which produces a breccia pipe. Note the difference between the breccia with angular rock fragments (left) and the Tertiary-age (about 30 million years old) paleoplacer with rounded pebbles (below left) and the stretched pebble conglomerate (very old paleoplacer nearly 2 billion years old) (below right) All three can contain gold. 



















Consolidated conglomerate 


Ore shoots
Many veins have sporadic gold values with localized ore shoots enriched in gold. Some of these shoots may be enriched 100 to 1000 times the average value of the vein. The challenge given the prospector is how to recognize these shoots. 

Ore shoots can be structurally or chemically controlled. Where pressures and/or temperatures dramatically dropped during hydrothermal mineralizing events, structurally controlled ore shoots occur. Chemically controlled ore shoots may occur where there was a chemical reaction between the mineralizing fluids and country rock. Any where an igneous rock (hot) comes in contact with a reactive rock (such as limestone) is a great place to find gold and other minerals.

Paleoplacer with stretched pebbles from the Medicine Bow Mountains, WY
These ancient stream deposits were later deformed under great pressure
that flattened and stretched the pebbles in the rock. Such rock sometimes
contain gold, uranium and even diamonds - basically any type of heavy
mineral that would have been carried in rivers more than 2.5 billion years
ago before the earth had any appreciable oxygen.
When searching for structurally controlled ore shoots, it is necessary to look for places where one would expect the pressure to have decreased along vein systems. Some structurally controlled ore shoots are found in folds. Many fold closures in gold-bearing veins will be enriched in gold. Another type of structurally controlled ore shoot includes vein intersections. Some intersections of gold-bearing veins have been dramatically enriched in gold.




The Carissa mine at South Pass. The shear zone in the background is rich in gold [average grade reported at 0.3 opt Au, much higher than the ore currently recovered from mines in Nevada (0.02 to 0.15 opt Au) (opt Au= ounces per ton of gold)]. Although not visible to the untrained eye, this giant gold-bearing structure lies in a large fold in the shear. The ore zone is 970 feet long, nearly 1,000 feet wide and continues to a minimum depth of 930 feet (and likely a few thousand feet deep). The property was withdrawn by the State of Wyoming even though it very likely hosts a few million ounces of gold worth a few $billion. 

There are many other types of structurally and chemically controlled ore shoots. For example, while prospecting in the Gold Hill district in the Medicine Bow Mountains of Wyoming, I noted gold was almost exclusively found in veins adjacent to amphibolite. The same veins in quartzite were unproductive. Additional information on ore shoots can be found in various books on economic geology and ore deposits (see Earll and others, 1976; Evans, 1980; and Peters, 1978).

What does gold look like?
Most people have a difficult time identifying gold at first. Gold is very heavy! It is 15 to 19 times heavier than water, it is malleable (it will easily scratch with a pocket knife), and has a distinct gold color that does not tarnish. Most people mistaken mica, pyrite (fool's gold), or chalcopyrite (copper-fool's gold) for real gold. These latter minerals are brittle and will crush to a fine greenish black powder. But don't be fooled. Some pyrite (fool's gold) may contain up to 30 parts per million gold hidden in the crystal structure (about an ounce per ton). To test for this gold, you will either have to assay, or powder the pyrite and pan it for gold. And chalcopyrite may have as much as 20 parts per million gold hidden in its crystal structure. 


Large specimen of mica (muscovite) shows a mirror-like surface, bronze-color, and will break into tiny pieces by a pocket knife unlike gold. Tiny mica flakes will easily move around in a gold pan while panning. As you pan, if the gold material stays flat on the surface of your pan and is difficult to move, it may be gold. However, if it moves easily, rotates or spins in the water, it is not gold. Mica is hard to pan out of a gold pan simply because it is essentially 2-dimensional and will cut through the water like a knife. 


Gold in the pan is angular, heavy and a brightly yellow-gold color. It does not have mirror-like surfaces and will stay put in the pan. Pyrite will crush to a greenish black powder and the same with chalcopyrite (photo of gold from Dickie Springs, Wyoming courtesy of Dr. J.D. Love). 

Conclusions
The search for productive gold deposits requires a good background in prospecting and economic geology as well as some luck. However, there are literally hundreds of occurrence and deposits in nearly every state in the West including Alaska. The best way to begin prospecting is to get a book that describes the gold mines and placers and visit these as I have found there are always many deposits near old gold mines that have been overlooked. This is how I found more than a hundred gold deposits and anomalies. An understanding of geology also helps: I found an entirely new gold district (Rattlesnake Hills in the early 1980s) that was missed by everyone else, simply because of the geology. It had very favorable geology and is currently being explored and drilled by several companies even though I discovered this district nearly 30 years ago! I was also on the discovery team of the giant Donlin Creek gold deposit in Alaska. Part of our discovery team (Rob Retherford, Bruce Hikock, Toni Hinderman) had recognized that some place gold at Donlin Creek was like corn flakes, very angular. Paul Graff visited the area with Mark Bronson and Richard Garnett and WestGold decided to explore this region. I was hired to map the deposit - it was a major discovery that includes more than $42 billion in gold! Yet this discovery occurred all the way back in 1988 and the gold deposit, considered one of the largest in the world, still is not being mined (but is under exploration).

So, get hold of books in your area that describe where gold deposits are found. Pick out the exciting areas and look at the deposit described in a book and look around for what the old prospectors missed (they missed a lot!). Search for publications at your local geological survey (usually they have a few good publications). If you are in Wyoming, I published numerous books that are available on the Internet, the University of Wyoming bookstore and the Wyoming Geological Survey. In particular, get copies of Bulletin 68 and 70 and Report of Investigations 44. If in Arizona, there are likely hundreds of lode gold deposits that have been missed because of so many eluvial placers with no reported gold source (the gold came from somewhere!). Colorado and California have hundreds of possibilities, but personally, I would look in Arizona, Wyoming, Montana and Alaska. For additional information on gold, gold in Nevada, New Mexico, Utah, Idaho, Washington, Oregon and South Dakota, watch for other blogs and keep track of my GOLD and Consulting websites as I will periodically update these. Myself and my son (Eric) who is also a geologist, are currently writing a couple of books on gold and we will tell you exactly where to look.



"Old mines never die, they are just forgotten". And enormous gossan exposed at the United Verde mine in Arizona. This property was mined for copper, gold, silver and zinc over many decades and then it was closed. Was it mined out? No - few mines are ever mined out. It is just that the economics prior to the 1960s made it uneconomic to mine. But at today's high gold prices (compare $1700+ per ounce to $35 per ounce) many of these old mines are likely economic. It is reported that the former miners did not recover the low-grade zinc and copper ore that likely contains more than a million ounces of gold. Additionally, after examining the aerial photos over this region, it is apparent that there is a 10+ mile gossan that likely is underlain by several massive sulfide deposits that remain unexplored. Remember, old mining districts often contain many opportunities. 

Fisher dredge on Rock Creek, South Pass, Wyoming showing unmined ground
While you are looking for gold deposits, remember, there are probably just as many if not more gemstone and diamond deposits that have been missed by prospectors and geologists. I recently found a major field of cryptovolcanic structures that are likely diamondiferous kimberlites sitting right along Interstate 80 west of the State Capitol of Wyoming. With a good arm, one could probably hit some of these with a rock next to the interstate. These remain unexplored and were just discovered a couple of years ago! 

Some of these are so obvious, that it makes one wonder what everyone has been doing. Take for instance the Cedar Ridge opal deposit. Probably the largest opal deposit in North America was sitting right on the side of the main highway to Riverton, Wyoming and exposed in numerous road cuts in an oil and gas field and in a pipeline - but totally overlooked. Even after the announcement of this major field in 2003, it still remains pretty much unexplored! This deposit contains opals in road cuts that weigh more than 100,000 carats and has common, fire and precious opal and some spectacular 'Sweetwater' agates. How anyone could have overlooked this, is beyond comprehension. But it sat there for several million years, untouched, other than a few brief mentions of the presence of opalized rock in old USGS reports! 

Then there is likely the two largest colored gemstone deposits on earth that I found at Grizzly Creek and Raggedtop Mountain in the Laramie Range. How these can remain essentially untouched is beyond my understanding. At one deposit, I found gem iolite as large as 24,000+ carats with pieces in the outcrop that likely weigh hundreds of thousands (if not millions) of carats. The other deposit may host as much as 2.7 trillion carats based on past geological reports (that missed the fact that these were gemstones). Just imagine how valuable these deposits are even if you mined them, cut the stones, sold them and only made $1 profit! The primary gemstone, iolite, can be cut for $0.5/carat and is sold for $15 to 150/carat. Nice profit! For those of you who wonder - I do not have claims on any of these, it was considered unethical when I was employed at the WGS (Although, today I am a consultant).

Stacked pay gravel on Rock Creek placer, South Pass.
Note the distinct clay and silt false bedrock layer. The
gold occurs in the gravels above and below the false
bedrock. The clay and silt represent a very dry period. 
There are many placer and lode deposits to be found, although the discovery of entirely new mining districts is rare. In all my years as an exploration geologist, I have only been able to find one new gold district. However, I have found many gold deposits within known districts and you should be able to do the same armed with a little knowledge.

Some of the better areas to search for gold are historical mining districts. In my experience, it is rare that any ore deposit has been completely mined out. Many historical and modern mines still contain workable mineral deposits as well as nearby deposits that have been overlooked. Many well-known giant mining companies of the past were notorious for overlooking significant ore deposits and ignoring others. For example, AMAX explored a large porphyry copper-silver-gold-lead-zinc deposit in the Absaroka Mountains southeast of Yellowstone. They focused on the prophyry and ignored nearby vein deposits that assayed >100 opt silver! Thus, one could potentially make a living just following up on the exploration projects of many of these past giants [as well as some projects of present giants]. 

Pyrite (fool's gold). Note the brassy color (not gold colored). 
Pyrite is brittle and the upper photo shows crystalline (cubic) 
pyrite. Upper specimen from the Lost Muffler gold prospect, 
Rattlesnake Hills and lower specimen from the Pickwick 
vein, Kirwin district, Wyoming. But don't throw them away: 
pyrite can contain a few hundred parts per million to potentially
2,000 ppm (64 ounces per ton) hidden in its crystal structure! 






Some References 
Blanchard, R., 1968, Interpretation of leached outcrops: Nevada Bureau of Mines Bulletin 66, 196 p. 
Earll, F.N., and others, 1976, Handbook for small mining enterprises: Montana Bureau of Mines and Geology Bulletin 99, 218 p. 
Evans, A.M., 1980, An introduction to ore geology: Elsevier, Amsterdam, The Netherlands, 231 p. 
Hausel, W.D., 1989, The Geology of Wyoming's Precious Metal Lode and Placer Deposits: Wyoming Geological Survey Bulletin 68, 248 p. 
Hausel, W.D., 1991, Economic Geology of the South Pass Granite-Greenstone Belt, Wind River Mountains, Western Wyoming.Geological Survey of Wyoming Report of Investigations 44, 129 p. 
Hausel, W.D., 1997, Copper, lead, zinc, molybdenum, and associated metal deposits of Wyoming: Wyoming State Geological Survey Bulletin 70, 229 p. 
Hausel, W.D., 1998, Diamonds and mantle source rocks in the Wyoming Craton, with a discussion of other U.S. occurrences: Wyoming State Geological Survey Report of Investigations 53, 93 p. 
Hausel, W.D., 2001, Placer and lode gold deposits: International California Mining Journal, v. 71, no. 2, p. 7-34. 
Hausel, W.D., 2009, Gems, Minerals and Rocks of Wyoming. A Guide for Rock Hounds, Prospectors & Collectors. Booksurge, 175 p. 
Hausel, W.D., 2010, How to find gold: Lost Treasure Magazine, July, p. 56-60. 
Hausel, W.D., Marlatt, G.G., Nielsen, E.L., and Gregory, R.W., 1993, Study of metals and precious stones in southern Wyoming: Wyoming State Geological Survey Mineral Report MR 93-1, 54 p. 
Hausel, W.D., Sutherland, W.M., and Gregory, E.B., 1988, Stream-sediment sample results in search of kimberlite intrusives in southeastern Wyoming: Wyoming State Geological Survey Open File Report 88-11, 11 p. (5 plates) (revised 1993). 
Hausel, W.D., and Sutherland, W.M., 2000, Gemstones and other unique minerals and rocks of Wyoming—A field guide for collectors: Wyoming State Geological Survey Bulletin 71, 268 p. 
Peters, W.C., 1978, Exploration and mining geology: John Wiley and Sons, New York, 696 p. 



Specimen of chalcopyrite in quartz (with green malachite and silver-colored specularite) from the Kurtz-Chatterton mine (a great, unexplored, gold prospect) from the Sierra Madre, Wyoming. The chalcopyrite is the brassy-orange material in the specimen. Some chalcopyrite can contain as much as 20 ppm Au (a considerable amount of gold equal to about 0.7 ounces per ton) hidden in the crystal structure along with some silver. 



Just hit a rock and you will smell garlic? No, it was not that Italian prospector standing up wind from you - it was most likely the smell of arsenic from the arsenopyrite that you just hit with your rock hammer. Arsenic-pyrite, or arsenopyrite, often is found around many gold or silver deposits and can hold up to 1,000 ppm gold (32 ounces per ton) hidden in its crystal structure. Whenever I find arsenopyrite, I have it assayed. Sometimes the mineral will assay high in silver, such as at South Pass. At Donlin Creek, Alaska, both arsenopyrite and stibnite yield high gold assays. Thus, arsenopyrite is a good guide to precious metals. The rock above contains considerable prismatic, silver gray metallic arsenopyrite with scorodite (reddish brown to yellow oxidized arsenopyrite). 


Cuprite (earthy red), malachite (green) and tenorite (black) from the Sunday Morning prospect, Seminoe Mountains, Wyoming. These minerals can all contain some silver and gold in their crystal structure. Malachite will emit CO2 bubbles just like soda pop when sprayed with dilute (10%) hydrochloric acid. Spray cuprite and tenorite with dilute hydrochloric acid and rub a well used rock hammer in the wet mineral and it will replace the worn parts of your hammer with native copper. 


Gold from Rock Creek at South Pass. 


Green malachite, a copper carbonate, often contains anomalous 
silver and gold detectable in assays 


Azurite (blue), tenorite (black) and cuprite (red) -
classical copper minerals. Don't make
the mistake many prospectors do - collect
these pretty minerals without having some assayed.
Copper minerals often contain gold hidden in the
mineral or replacing some copper atoms in the crystal
lattice. They also contain silver more often than not.



Not all assayers are created equal. Do some research and check on an assayer before using them.